The role of genotype and viral agents in the formation of tomato tolerance to high temperatures
DOI:
https://doi.org/10.52673/18570461.24.3-74.02Keywords:
tomato, pollen grain, temperature stress, virus, source of variation, thermoresistanceAbstract
Sunt prezentate rezultatele cercetărilor privind determinarea surselor de variație ce provoacă variabilitatea microgametofitului la descendenții plantelor reinfectate cu virusuri (virusul mozaicului tutunului/VMT sau virusul aspermiei tomatelor/VAT) pe fond de temperaturi ridicate. Tratarea termică a grăuncioarelor de polen a contribuit la modificarea caracteristicilor funcționale ale microgameților, care în majoritatea cazurilor s-a manifestat prin efecte inhibitoare. Au fost stabiliți factorii ce provoacă variația caracteristicilor genotipurilor la nivel diploid și haploid. S-a demonstrat că reacția genotipurilor analizate la tratarea termică la etapa de germinare a semințelor a fost controlată de influența majoră a genotipului și a factorului termic, fapt ce sporește gradul de identificare eficientă a formelor tolerante. Au fost evidențiate genotipuri care pe fond de temperaturi ridicate au manifestat potențial înalt de reproducere. S-a stabilit că la etapa de gametofit mascul și sporofit, descendenții plantelor infectate au depășit valorile martorului după nivelul de termorezistență, fapt ce se datorează eliminării de planta-gazdă din generația precedentă a grăuncioarelor de polen cu viabilitatea redusă. Astfel, aplicarea metodelor selecției gametice în programele de ameliorare are o importanță majoră pentru diminuarea acțiunii negative a temperaturilor ridicate atât la plantele sănătoase, cât și la cele infectate/ reinfectate cu virusuri și descendenții acestora
References
1. Tsai, W., Brosnan, C., Mitter, N. et al. Perspectives on plant virus diseases in a climate change scenario of elevated temperatures.In: Stress Biology, 2022, vol. 2, 37, https://doi.org/10.1007/s44154-022-00058-x
2. Fedulov, Y., Kotlearov, I., Dotsenko, K. Ustoychivosti rasteniy k neblagopriyatnym faktoram sredy. Krasnodar: KubGAU, 2015. 64 p.
3. Jagadish, K. Heat stress during flowering in cereals – effects and adaptation strategies. In: New fitologist, 2020, vol. 6, https://doi.org/10.1111/nph.16429
4. Zinn, K., Tunc-Ozdemir, M., Harper, J. Temperature stress and plant sexual reproduction: uncovering the weakest links. In: J Exp Bot., 2010, vol. 61(7), 1959-1968, https://doi.org/10.1093/jxb/erq053.
5. Barnabás, B., Jäger, K., Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. In: Plant Cell Environ. 2008, vol. 31(1), 11-38, https://doi.org/10.1111/j.13653040.2007.01727.x
6. Hedhly, A., Hormaza, J., Herrero, M. Global warming and sexual plant reproduction. In: Trends Plant Sci., 2009, vol. 14, 30-36, https://doi.org/10.1016/j.tplants.2008.11.001
7. Mesihovic, A., Iannacone, R., Firon, N. et al. Heat stress regimes for the investigation of pollen thermotolerance in crop plants. In: Plant Reproduction, 2016, vol. 29(1-2), 93-105, https://doi.org/10.1007/s00497-016-0281-y
8. De Storme, N., Geelen, D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. In: Plant Cell Environ, 2014, vol. 37(1), 1-18, https://doi.org/10.1111/pce.12142
9. Zhuchenko-jr. A. Optimization off the accounting unit in hybridization analysis in order to obtain new information abot recombination processes. In: Vestnik agrarnoy nauky, 2023, vol. 4 (103). 3-9, https://doi.org/10.17238/issn2587-666X.2023.4.3
10. Lohani, N., Singh, M., Bhalla, P. High temperature susceptibility of sexual reproduction in crop plants. In: J. Expt. Bot., 2020, vol. 71(2), 555-568, https://doi.org/10.1093/jxb/erz426
11. Zhang, C., Li, G., Chen, T. et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. In: Rice, 2018, no. 14, https://doi.org/10.1186/s12284-018-0206-5
12. Masoomi-Aladizgeh, F., Najeeb, U., Sara Hamzelou, S. et al. Pollen development in cotton (Gossypium hirsutum) is highly sensitive to heat exposure during the tetrad stage. In: Plant Cell Environ, 2021, vol. 44 (7), 2150-2166, https://doi.org/10.1111/pce.13908
13. Parrotta, L., Faleri, C., Cresti, M. et al. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. In: Planta, 2016, vol. 243.1, 43-63, https://doi.org/10.1007/s00425-015-2394-1
14. Driedonks, N. From flower to fruit in the heat reproductive thermotolerance in tomato and its wild relatives. Thesis, Radboud University, Nijmegen, The Netherlands, 2018. 190 p.
15. Xu, J., Driedonks, N., Rutten, M. et al. Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). In: Mol. Breed, 2017, vol. 37, 58.
16. Butković, A., Gonzalez, R. A brief view of factors that affect plant virus evolution. In: Front. Virol, 2022, vol. 2, https://doi.org/10.3389/fviro.2022.994057
17. Chojak-Koźniewska, J., Kuźniak, E., Zimny, J. The effects of combined abiotic and pathogen stress in plants: insights from salinity and Pseudomonas syringae pv lachrymans interaction in cucumber. In: Front. Plant Sci. 2018, https://doi.org/10.3389/fpls.2018.01691
18. Zandalinas, S., Sengupta, S., Felix, B. et al. The impact of multifactorial stress combination on plant growth and survival. In: New Phytologist, 2021, vol. 230, 1034-1048, https://doi.org/10.1101/2020.11.23.394593
19. Ivakin A. Opredelenie jarostoikosty ovoshchyh culytur po rostovoy reactsii prorostkov posle progrevania. In: Fiziologia rasteniy, 1981, vol. 2, 444-447.
20. Paupière, M., Van Heusden, A., Bovy, A. The metabolic basis of pollen thermo-tolerance: perspectives for breeding. In: Metabolites, 2014, vol. 4(4), 889-920, https://doi.org/10.3390/metabo4040889
Downloads
Published
License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.







