Photoresistors based on nanocomposite obtained by oxidation of GaSe crystals as atmospheric oxide detectors

Authors

DOI:

https://doi.org/10.52673/18570461.24.1-72.01

Keywords:

photosensitivity, photoresistor, Single crystals, gallium oxide β-Ga2O3, GaSe, nanostructures

Abstract

A  novel nanocomposite material based on Ga2Se3 and β-Ga2O3 crystallites photosensitive in the wavelength range from 500 nm to 600 nm of the electromagnetic spectrum was obtained by heat treatment in air at 900 °C of GaSe plates for 30 min. Upon increasing the duration of the heat treatment up to 6 h, complete oxidation of the GaSe plates occurs with the formation of the β-Ga2O3 layer with bandgap width of 4.60 eV and photosensitivity in the ultraviolet region (UV-C). The photosensitivity bands of photoresistors based on Ga2Se3/Ga2O3 composite and nanostructured β-Ga2O3 oxide fall within the absorption band in the green-red and UV-C region, respectively, and the respective photoresistors can serve as airborne ozone detectors.

References

1. Berale, E., Zapan, M. Chimie organică. În: Tehnica, 1977, p. 680.

2. Berger, Olena, et al. Influence of microstructure of tungsten oxide thin films on their general performance as ozone and NOx gas sensor. In: Smart Sensors, Actuators, and MEMS. 2003. SPIE. https://doi.org/10.1117/12.501930

3. Ziegler, Daniele, et al. Barium hexaferrite thick-films for ozone detection at low temperature. In: Solid State Ionics, 2018, vol. 320, 24-32, https://doi.org/10.1016/j.ssi.2018.02.028

4. Korotcenkov, Gh., Brinzari, V., Cho, B.K. In2O3-and SnO2-based ozone sensors: Design and characterization. In: Critical Reviews in Solid State and Materials Sciences, 2018, vol. 43, no. 2, 83-132, https://doi.org/10.1080/10408436.2017.1287661

5. Washenfelder, R.A., et al. Measurement of atmospheric ozone by cavity ring-down spectroscopy. In: Environmental science & technology, 2011, vol. 45, no. 7, 2938-2944, https://doi.org/10.1021/es103340u

6. Medvedeva, Z.S. Khal'kogenidy elementov III B podgruppy periodicheskoy sistemy. Nauka, 1968.

7. Kanaya, K., Okayama, S. Penetration and energy-loss theory of electrons in solid targets. In: Journal of Physics D: Applied Physics, 1972, vol. 5, no. 1, 43-58, https://doi.org/10.1088/0022-3727/5/1/308

8. Kowalski, B.M., et al. Role of humidity in oxidation of ultrathin GaSe. In: Materials Research Express, 2019, vol. 6, no. 8, 085907, https://doi.org/10.1088/2053-1591/ab1dd2

9. Beechem, T.E., et al. Oxidation of ultrathin GaSe. In: Applied physics letters, 2015, vol. 107, no. 17, 173103, https://doi.org/10.1063/1.4934592

10. Siciliano, T., et al. Thermal oxidation of amorphous GaSe thin films. In: Vacuum, 2013, vol. 92, 65-69, https://doi.org/10.1016/j.vacuum.2012.12.001

11. Boldish, S.I., White, W.B. Optical band gaps of selected ternary sulfide minerals. In: American Mineralogist, 1998, vol. 83, no. 7-8, 865-871, https://doi.org/10.2138/am-1998-7-818

12. Murphy, A.B. Modified Kubelka-Munk model for calculation of the reflectance of coatings with Washenfelder, R.A., et al. Measurement of atmospheric ozone by cavity ring-down spectroscopy. In: Environmental science & technology, 2011, vol. 45, no. 7, 2938-2944, https://doi.org/10.1021/es103340u

13. Tippins, H.H. Optical absorption and photoconductivity in the band edge of β − Ga2O3. In: Physical Review, 1965, vol. 140, no. 1A, p. A316, https://doi.org/10.1103/PhysRev.140.A316

14. Ueda, N., et al. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. In: Applied physics letters, 1997, vol. 71, no. 7, 933-935, https://doi.org/10.1063/1.119693

15. Jangir, R., et al. Synthesis and characterization of β-Ga2O3 nanostructures grown on GaAs substrates. In: Applied Surface Science, 2011, vol. 257, no. 22, 9323-9328, https://doi.org/10.1016/j.apsusc.2011.05.039

16. Chen, Z., et al. The impact of growth temperature on the structural and optical properties of catalyst-free β-Ga2O3 nanostructures. In: Materials Research Express, 2016, vol. 3, no. 2, 025003, https://doi.org/10.1088/2053-1591/3/2/025003

17. Lin, C.H., Lee, C.T. Ga2O3-based solar-blind deep ultraviolet light-emitting diodes. In: Journal of Luminescence, 2020, vol. 224, 117326.

https://doi.org/10.1016/j.jlumin.2020.117326

18. Du Xuejian, et al. Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD. In: Journal of Materials Science, 2015, vol. 50, 3252-3257, https://doi.org/10.1007/s10853-015-8893-4

19. Zhang, N., et al. Structural and electronic characteristics of Fe-doped β-Ga2O3 single crystals and the annealing effects. In: Journal of Materials Science, 2021, vol. 56, no. 23, 13178-13189, https://doi.org/10.1007/s10853-021-06027-5

20. Nieto-Caballero, F.G., et al. β-Ga2O3 Particles Formed of a Complex Organic by Electrolysis. In: Int. J. Electrochem. Sci, 2015, vol. 10, 9742-9750, https://doi.org/10.1016/S1452-3981(23)11216-8

21. Le Toullec, R., et al. Optical constants ofε-GaSe. In: Il Nuovo Cimento B (1971-1996), 1977, vol. 38, no. 2, 159-167, https://doi.org/10.1007/BF02723483

22. Le Toullec, R., Piccioli, N., Chervin, J.C. Optical properties of the band-edge exciton in GaSe crystals at 10 K. In: Physical Review B, 1980, vol. 22, no. 12, 6162-6170, https://doi.org/10.1103/PhysRevB.22.6162

23. Zalamai, V.V, et al. Wannier-Mott excitons in GaSe single crystals. In: Journal of Optics, 2020, vol. 22, no. 8, 085402, https://doi.org/10.1088/2040-8986/ab9f17

24. Bletskan, D.I., Kabatsii, V.N., Kranjčec, M. Photoelectric properties of ordered-vacancy Ga2Se 3 single crystals. In: Inorganic Materials, 2010, vol. 46, 1290-1295, https://doi.org/10.1134/S0020168510120034

25. Huang, Lu, et al. Comparison study of β-Ga2O3 photodetectors grown on sapphire at different oxygen pressures. In: IEEE Photonics Journal, 2017, vol. 9, no. 4, 1-8, https://doi.org/10.1109/JPHOT.2017.2731625

26. Cui, Shujuan, et al. Room‐Temperature Fabricated Amorphous Ga2O3 High‐Response‐Speed Solar‐Blind Photodetector on Rigid and Flexible Substrates. In: Advanced Optical Materials, 2017, vol. 5, no. 19, 1700454, https://doi.org/10.1002/adom.201700454

27. Sprincean, V., et al. Photodetector Based on β-Ga2O3 Nanowires on GaSxSe1-X Solid Solution Substrate. In: International Conference on Nanotechnologies and Biomedical Engineering, 2023, Springer, 231-241, https://doi.org/10.1007/978-3-031-42775-6_26

28. Zhao, X., et al. Improvement for the performance of solar-blind photodetector based on β-Ga2O3 thin films by doping Zn. In: Journal of Physics D: Applied Physics, 2017, vol. 50, no. 8, 085102. https://doi.org/10.1088/1361-6463/aa5758

29. Banwell, C.N. Fundamentals of molecular spectroscopy. In: McGraw-Hill Book Company 1983, p. 107.

30. Herzberg, G. Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules. In: Van Nostrand-Reinhold, New York, 1966, p. 617.

31. Ditchburn R.W. Light. In: London, Glasgow by Blackie & Son, 1963, p. 413.

32. Landsberg, G. Optica. In: Editura Tehnică București, 1951, p. 430.

Published

2024-06-06

Issue

Section

Articles

How to Cite

Sprincean, V. (2024). Photoresistors based on nanocomposite obtained by oxidation of GaSe crystals as atmospheric oxide detectors. Akademos, 1(72). https://doi.org/10.52673/18570461.24.1-72.01

Similar Articles

You may also start an advanced similarity search for this article.